vendredi 17 février 2017

NASA Selects Proposals for First-Ever Space Technology Research Institutes











NASA logo.

Feb. 17, 2017

NASA has selected proposals for the creation of two multi-disciplinary, university-led research institutes that will focus on the development of technologies critical to extending human presence deeper into our solar system.


Image above: High performance materials and structures are needed for safe and affordable next generation exploration systems such as transit vehicles, habitats, and power systems. Image Credit: NASA.

The new Space Technology Research Institutes (STRIs) created under these proposals will bring together researchers from various disciplines and organizations to collaborate on the advancement of cutting-edge technologies in bio-manufacturing and space infrastructure, with the goal of creating and maximizing Earth-independent, self-sustaining exploration mission capabilities.

“NASA is establishing STRIs to research and exploit cutting-edge advances in technology with the potential for revolutionary impact on future aerospace capabilities," said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate in Washington. "These university-led, multi-disciplinary research programs promote the synthesis of science, engineering and other disciplines to achieve specific research objectives with credible expected outcomes within five years. At the same time, these institutes will expand the U.S. talent base in areas of research and development with broader applications beyond aerospace."

Each STRI will receive up to $15 million over the five-year period of performance. The selected new institutes are:

Center for the Utilization of Biological Engineering in Space (CUBES)

As NASA shifts its focus from low-Earth orbit to deep space missions, the agency is investing in the development of technologies that will allow long-duration mission crews to manufacture the products they need, rather than relying on the current practice of resupply missions from Earth.


Image above: Advanced biological engineering techniques are rapidly emerging that can lead to innovative approaches for in situ biological manufacturing techniques using microbes and plants, and provide the means to create sustainable technologies for both future space exploration and terrestrial applications. Image Credit: NASA.

The CUBES institute will advance research into an integrated, multi-function, multi-organism bio-manufacturing system to produce fuel, materials, pharmaceuticals and food. While the research goals of the CUBES institute are to benefit deep-space planetary exploration, these goals also lend themselves to practical Earth-based applications. For example, the emphasis on using carbon dioxide as the base component for materials manufacturing has relevance to carbon dioxide management on Earth.

The CUBES team is led by Adam Arkin, principal investigator at the University of California, Berkeley, in partnership with Utah State University, the University of California, Davis, Stanford University, and industrial partners Autodesk and Physical Sciences, Inc.

Institute for Ultra-Strong Composites by Computational Design (US-COMP)

Affordable deep space exploration will require transformative materials for the manufacturing of next-generation transit vehicles, habitats, power systems, and other exploration systems. These building materials need to be lighter and stronger than those currently used in even the most advanced systems.

US-COMP aims to develop and deploy a carbon nanotube-based, ultra-high strength, lightweight aerospace structural material within five years. Success will mean a critical change to the design paradigm for space structures. Through collaboration with industry partners, it is anticipated that advances in laboratories could quickly translate to advances in manufacturing facilities that will yield sufficient amounts of advanced materials for use in NASA missions.

Results of this research will have broad societal impacts, as well. Rapid development and deployment of the advanced materials created by the institute could support an array of Earthly applications and benefit the U.S. manufacturing sector.

US-COMP is a multidisciplinary team of 22 faculty members led by Gregory Odegard, principal investigator at the Michigan Technological University, in partnership with Florida State University, University of Utah, Massachusetts Institute of Technology, Florida A&M University, Johns Hopkins University, Georgia Institute of Technology, University of Minnesota, Pennsylvania State University, University of Colorado and Virginia Commonwealth University. Industrial partners include Nanocomp Technologies and Solvay, with the U.S. Air Force Research Lab as a collaborator.

These awards are funded by NASA’s Space Technology Mission Directorate, which is responsible for developing the cross-cutting, pioneering, new technologies and capabilities needed by the agency to achieve its current and future missions.

For more information about STMD, visit: http://www.nasa.gov/spacetech

Technology: https://www.nasa.gov/topics/technology/index.html

Images (mentioned), Text, Credits: NASA/Gina Anderson/Karen Northon.

Greetings, Orbiter.ch

A Dust Devil on Hilly Terrain & Scars of Erosion












NASA - Mars Reconnaissance Orbiter (MRO) logo.

Feb. 17, 2017

A Dust Devil on Hilly Terrain

There are many dust devils on Mars -- little twisters that raise dust from the surface. They have also cleaned dust off of the solar panels of the rovers Opportunity and Spirit, improving the solar power production. (Spirit became stuck in 2009 and ceased communication a year later.)

HiRISE sees many dust-devil tracks on Mars, but rarely captures an active feature because the images cover such small areas and because the typical time of day near 3 p.m. is past the peak heating and dust-devil activity. In this 2008 image in the Amazonis region, we got lucky, although not lucky enough to capture the whole swirl in the color strip.

The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 29.5 centimeters (11.6 inches) per pixel (with 1 x 1 binning) to 58.9 centimeters (23.2 inches) per pixel (with 2 x 2 binning)]. North is up.

The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.

Scars of Erosion

This large crescent dune in Kaiser Crater shows the scars of many types of seasonal erosional activities. Along its downwind slope are large gullies which are active during winter, when frost drives dune material downslope, carving out channels and creating fan-shaped aprons.

On the upwind slope (bottom), dust devil tracks are visible: dark lines and curliques created during the spring season by small wind vortices vacuuming up a thin layer of dust and exposing the dark dune sand.

This is a stereo pair with http://www.uahirise.org/ESP_021720_1330

Note: Both the cutout and the above image are rotated so that North is to the right.

The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.3 centimeters (10 inches) per pixel (with 1 x 1 binning); objects on the order of 76 centimeters (30 inches) across are resolved.] North is up.

Mars Reconnaissance Orbiter (MRO)

The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.

Mars Reconnaissance Orbiter (MRO): http://www.nasa.gov/mission_pages/MRO/main/index.html

Images, Text, Credits: NASA/JPL-Caltech/Univ. of Arizona/Tony Greicius.

Best regards, Orbiter.ch

Dragon Capture Training and Robonaut Power Check Today











ISS - Expedition 50 Mission patch.

February 17, 2017

Three Expedition 50 crew members practiced today the robotic capture of the SpaceX Dragon resupply ship when it arrives at the International Space Station two days after its launch. A humanoid robot, better known as Robonaut, had its power supply checked out during a full day of troubleshooting.

Commander Shane Kimbrough and Flight Engineer Thomas Pesquet partnered up and practiced capturing the Dragon cargo ship using the Canadarm2 robotic arm. The duo will be in the cupola Monday morning to capture Dragon following its 10:01 a.m. EST Saturday launch from Kennedy Space Center. NASA astronaut Peggy Whitson will assist her crewmates and monitor Dragon’s approach and rendezvous.


Image above: Expedition 50 astronauts (from left) Peggy Whitson, Shane Kimbrough and Thomas Pesquet pose with the humanoid Robonaut. Image Credit: NASA.

Dragon is packing nearly 5,500 pounds of crew supplies, station gear and advanced science experiments. Some of the research will look at new technologies to improve space travel, observation gear to study Earth’s ozone and processes to improve how medicine works.

Whitson worked throughout the day on the robotic astronaut assistant, Robonaut. She opened up Robonaut’s torso and checked its cables and computer cards searching for an intermittent fault in its power supply. Robonaut is being tested for its ability to assist astronauts in the future with routine tasks and high risk activities.

Related links:

Robonaut: https://www.nasa.gov/mission_pages/station/research/experiments/760.html

Resupply mission: https://www.nasa.gov/mission_pages/station/structure/launch/orbital.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Text, Credits: NASA/Mark Garcia.

Greetings, Orbiter.ch

Cabbage Patch: Fifth Crop Harvested Aboard Space Station











ISS - Expedition 50 Mission patch.

Feb. 17, 2017

After spending nearly a month tending to the International Space Station’s first crop of Chinese cabbage, astronaut Peggy Whitson harvested the leafy greens on Feb. 17.

At first, one of the six seeds of the Tokyo Bekana Chinese cabbage variety seemed to have been planted higher than the rest, keeping it from getting wet enough in the beginning. But the on-orbit gardener would not be deterred.


Image above: Tokyo Bekana Chinese cabbage leaves are shown prior to Friday’s harvest aboard the International Space Station. Photo credit: NASA.

“Peggy is doing an amazing job,” said Veggie Project Manager Nicole Dufour. “She wouldn’t give up and she was able to get the seed in pillow D to germinate.”

While the space station crew will get to eat some of the Chinese cabbage, the rest is being saved for scientific study back at Kennedy Space Center. This is the fifth crop grown aboard the station, and the first Chinese cabbage. The crop was chosen after evaluating several leafy vegetables on a number of criteria, such as how well they grow and their nutritional value. The top four candidates were sent to Johnson Space Center’s Space Food Systems team, where they brought in volunteer tasters to sample the choices. The Tokyo Bekana turned out to be the most highly rated in all the taste categories.

Astronauts often report that their taste buds dull during spaceflight, and they frequently add hot sauce, honey or soy sauce to otherwise bland-tasting fare. One explanation for this may be that, in a reduced gravity environment, the fluid in astronauts’ bodies shifts around equally, rather than being pulled down into their legs as we're accustomed to on Earth. The fluid that fills up their faces feels similar to the congestion from a cold and reduces their ability to smell. Researchers suggest this phenomenon — combined with all the other odors aboard the confined orbiting laboratory competing with the aroma of their food — may ultimately dull their sense of taste.


Image above: Astronaut Peggy Whitson harvests Tokyo Bekana Chinese cabbage aboard the International Space Station on Feb. 17. Image Credit: NASA TV.

However, there is a backup plan to ensure the crew’s culinary delight. If the fresh Chinese cabbage they grew doesn’t awaken their taste buds on its own, packets of ranch dressing were also sent up to help them enjoy the fruits (or veggies) of their labor.

What’s up next for Veggie? Two exciting prospects are on the horizon. Later this spring, a second Veggie system will be sent up to be seated next to the current one. It will provide side-by-side comparisons for future plant experiments and will hopefully make astronauts like Whitson happy to have a bigger space garden.

“I love gardening on Earth, and it is just as fun in space ...” Whitson tweeted in early February. “I just need more room to plant more!”


Image above: At Kennedy Space Center, Veggie Project Manager Nicole Dufour instructs astronaut Peggy Whitson during the harvest of Chinese cabbage aboard the International Space Station. Image Credit: NASA.

Additionally, aboard the next resupply mission to the space station will an experiment involving Arabidopsis, a small flowering plant, and petri plates inside the Veggie facility. Arabidopsis is the genetic model of the plant world, making it a perfect sample organism for performing genetic studies. The principal Investigator is University of Florida’s Dr. Anna Lisa Paul.

“These experiments will provide a key piece of the puzzle of how plants adjust their physiology to meet the needs of growing in a place outside their evolutionary experience,” Dr. Paul said. “And the more complete our understanding, the more success we will have in future missions as we take plants with us off planet.”

Later this year, the Advanced Plant Habitat, NASA’s largest plant growth chamber, will make its way to the station, increasing the amount of scientific knowledge needed to dig deeper into long-duration food production for missions farther and farther from home.

Related links:

Veg-03: https://www.nasa.gov/mission_pages/station/research/experiments/1294.html

Resupply mission: https://www.nasa.gov/mission_pages/station/structure/launch/orbital.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA's Kennedy Space Center, by Amanda Griffin/Anna Heiney.

Best regards, Orbiter.ch

Hubble Spotlights a Celestial Sidekick












NASA - Hubble Space Telescope patch.

Feb. 17, 2017


This image was captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), a highly efficient wide-field camera covering the optical and near-infrared parts of the spectrum. While this lovely image contains hundreds of distant stars and galaxies, one vital thing is missing — the object Hubble was actually studying at the time!

This is not because the target has disappeared. The ACS actually uses two detectors: the first captures the object being studied — in this case an open star cluster known as NGC 299 — while the other detector images the patch of space just ‘beneath’ it. This is what can be seen here.

Technically, this picture is merely a sidekick of the actual object of interest — but space is bursting with activity, and this field of bright celestial bodies offers plenty of interest on its own. It may initially seem to show just stars, but a closer look reveals many of these tiny objects to be galaxies. The spiral galaxies have arms curving out from a bright center. The fuzzier, less clearly shaped galaxies might be ellipticals. Some of these galaxies contain millions or even billions of stars, but are so distant that all of their starry residents are contained within just a small pinprick of light that appears to be the same size as a single star!

video
Hubble orbiting Earth

The bright blue dots are very hot stars, sometimes distorted into crosses by the struts supporting Hubble’s secondary mirror. The redder dots are cooler stars, possibly in the red giant phase when a dying star cools and expands.

For images and more information about Hubble, visit:

http://hubblesite.org/
http://www.nasa.gov/hubble
http://www.spacetelescope.org/

Image, Video, Text, Credits: ESA/Hubble & NASA/Text Credits: European Space Agency/NASA/ Karl Hille.

Best regards, Orbiter.ch

ESA's Six-Legged Suntraker Flying on a Dragon








ESA - European Space Agency patch.

17 February 2017

Tomorrow, a Space-X Dragon cargo ferry will be launched to the International Space Station packed with supplies, experiments, tools and food for the six astronauts living and working high above Earth. In the unpressurised cargo hold is a new NASA sensor that will monitor our atmosphere with a helping hand from ESA. 

In Dragon compartment

The Space Station flies 400 km above our planet at 28 800 km/h, experiencing 16 sunrises, sunsets, moonrises and moonsets every 24 hours. This orbit is lower than most satellites and offers scientists interesting possibilities for research.

NASA’s Stratospheric Aerosol and Gas Experiment, or SAGE III, will monitor aerosols, ozone and other gases in Earth’s high atmosphere by looking at the sunlight and moonlight as they pass through. Astronauts on the Space Station often remark at how thin the atmosphere appears when seen from the side.

Moonset seen from Space Station

SAGE will improve our understanding of ozone and climate change in the upper atmosphere by looking sideways at the Sun and Moon as they skim the horizon and this where ESA’s Hexapod comes in.

Swivel, tilt and turn

Hexapod’s six legs work together to track the Sun and Moon precisely in the few seconds of their setting and rising dozens of times each day.

Space sunrise

Hexapod will track the Sun until it disappears behind the horizon and then return to a starting position to repeat the process with the Moon, for years on end.

Falcon 9 launcher with Dragon spacecraft

Once Dragon arrives at the Station, Hexapod and SAGE will be moved to the Station’s main truss and installed using its robotic arm. Hexapod’s intricate machinery will be locked for the demanding g-forces and vibrations of launch, before being released on command to do its job, eliminating the need for a spacewalk.

Hexapod in clean room

Hexapod was built by OHB Italia and Thales Alenia Space Italy with Airbus Defence and Space. Following checks in orbit expected to take two weeks, ESA will hand over control to NASA for the atmospheric studies to begin. The goal is for at least three years of observations, with all measurements publicly available.

Related links:

SAGE III: http://sage.nasa.gov/

Proxima: http://www.esa.int/Our_Activities/Human_Spaceflight/Proxima

Images, Text, Credits: ESA/NASA/Public domain.

Best regards, Orbiter.ch

NASA's Juno to Remain in Current Orbit at Jupiter












NASA - JUNO Mission logo.

February 17, 2017

NASA's Juno mission to Jupiter, which has been in orbit around the gas giant since July 4, 2016, will remain in its current 53-day orbit for the remainder of the mission. This will allow Juno to accomplish its science goals, while avoiding the risk of a previously-planned engine firing that would have reduced the spacecraft's orbital period to 14 days.

"Juno is healthy, its science instruments are fully operational, and the data and images we've received are nothing short of amazing," said Thomas Zurbuchen, associate administrator for NASA's Science Mission Directorate in Washington. "The decision to forego the burn is the right thing to do -- preserving a valuable asset so that Juno can continue its exciting journey of discovery."

Juno has successfully orbited Jupiter four times since arriving at the giant planet, with the most recent orbit completed on Feb. 2. Its next close flyby of Jupiter will be March 27.


Image above: NASA's Juno spacecraft soared directly over Jupiter's south pole when JunoCam acquired this image on February 2, 2017 at 6:06 a.m. PT (9:06 a.m. ET), from an altitude of about 62,800 miles (101,000 kilometers) above the cloud tops. Image Credits: NASA/JPL.

The orbital period does not affect the quality of the science collected by Juno on each flyby, since the altitude over Jupiter will be the same at the time of closest approach. In fact, the longer orbit provides new opportunities that allow further exploration of the far reaches of space dominated by Jupiter's magnetic field, increasing the value of Juno's research.

During each orbit, Juno soars low over Jupiter's cloud tops -- as close as about 2,600 miles (4,100 kilometers). During these flybys, Juno probes beneath the obscuring cloud cover and studies Jupiter's auroras to learn more about the planet's origins, structure, atmosphere and magnetosphere.

The original Juno flight plan envisioned the spacecraft looping around Jupiter twice in 53-day orbits, then reducing its orbital period to 14 days for the remainder of the mission. However, two helium check valves that are part of the plumbing for the spacecraft's main engine did not operate as expected when the propulsion system was pressurized in October. Telemetry from the spacecraft indicated that it took several minutes for the valves to open, while it took only a few seconds during past main engine firings.

"During a thorough review, we looked at multiple scenarios that would place Juno in a shorter-period orbit, but there was concern that another main engine burn could result in a less-than-desirable orbit," said Rick Nybakken, Juno project manager at NASA's Jet Propulsion Laboratory in Pasadena, California. "The bottom line is a burn represented a risk to completion of Juno's science objectives."

Juno's larger 53-day orbit allows for "bonus science" that wasn't part of the original mission design. Juno will further explore the far reaches of the Jovian magnetosphere -- the region of space dominated by Jupiter's magnetic field -- including the far magnetotail, the southern magnetosphere, and the magnetospheric boundary region called the magnetopause. Understanding magnetospheres and how they interact with the solar wind are key science goals of NASA's Heliophysics Science Division.

"Another key advantage of the longer orbit is that Juno will spend less time within the strong radiation belts on each orbit," said Scott Bolton, Juno principal investigator from Southwest Research Institute in San Antonio. "This is significant because radiation has been the main life-limiting factor for Juno."

Juno spacecraft orbiting Jupiter. Image Credits: NASA/JPL

Juno will continue to operate within the current budget plan through July 2018, for a total of 12 science orbits. The team can then propose to extend the mission during the next science review cycle. The review process evaluates proposed mission extensions on the merit and value of previous and anticipated science returns.

The Juno science team continues to analyze returns from previous flybys. Revelations include that Jupiter's magnetic fields and aurora are bigger and more powerful than originally thought and that the belts and zones that give the gas giant's cloud top its distinctive look extend deep into the planet's interior. Peer-reviewed papers with more in-depth science results from Juno's first three flybys are expected to be published within the next few months. In addition, the mission's JunoCam -- the first interplanetary outreach camera -- is now being guided with assistance from the public. People can participate by voting on which features on Jupiter should be imaged during each flyby.

"Juno is providing spectacular results, and we are rewriting our ideas of how giant planets work," said Bolton. "The science will be just as spectacular as with our original plan."

JPL manages the Juno mission for NASA. The mission's principal investigator is Scott Bolton at Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, for NASA's Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is managed for NASA by Caltech in Pasadena, California.

More information on the Juno mission is available at:

http://www.nasa.gov/juno

http://missionjuno.org

JunoCam: https://www.missionjuno.swri.edu/junocam

Follow the mission on Facebook and Twitter at:

http://www.facebook.com/NASAJuno

http://www.twitter.com/NASAJuno

Images (mentioned), Text, Credits: NASA/Dwayne Brown/Laurie Cantillo/JPL/DC Agle.

Greetings, Orbiter.ch